3,411 research outputs found

    Application of Calspan pitch rate control system to the Space Shuttle for approach and landing

    Get PDF
    A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended

    An in-flight investigation of a twin fuselage configuration in approach and landing

    Get PDF
    An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected

    A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    Get PDF
    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts

    Complex Probabilities on R^N as Real Probabilities on C^N and an Application to Path Integrals

    Get PDF
    We establish a necessary and sufficient condition for averages over complex valued weight functions on R^N to be represented as statistical averages over real, non-negative probability weights on C^N. Using this result, we show that many path-integrals for time-ordered expectation values of bosonic degrees of freedom in real-valued time can be expressed as statistical averages over ensembles of paths with complex-valued coordinates, and then speculate on possible consequences of this result for the relation between quantum and classical mechanics.Comment: 4 pages, 0 figure

    One-Flavour Hybrid Monte Carlo with Wilson Fermions

    Get PDF
    The Wilson fermion determinant can be written as product of the determinants of two hermitian positive definite matrices. This formulation allows to simulate non-degenerate quark flavors by means of the hybrid Monte Carlo algorithm. A major numerical difficulty is the occurrence of nested inversions. We construct a Uzawa iteration scheme which treats the nested system within one iterative process.Comment: 11 pages, to appear in proceedings of the workshop "Numerical Challenges in Lattice QCD", Springer Verla

    Mixing of scalar glueballs and flavour-singlet scalar mesons

    Get PDF
    We discuss in detail the extraction of hadronic mixing strengths from lattice studies. We apply this to the mixing of a scalar glueball and a scalar meson in the quenched approximation. We also measure correlations appropriate for flavour-singlet scalar mesons using dynamical quark configurations from UKQCD. This enables us to compare the results from the quenched study of the mixing with the direct determination of the mixed spectrum. Improved methods of evaluating the disconnected quark diagrams are also presented.Comment: 23 pages, 5 postscript figure

    Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks

    Get PDF
    Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm systematic})) in our quenched lattice QCD numerical calculation with staggered quarks. The systematic error is mostly from finite-volume effect and the finite-spacing effect is negligible. The flavor symmetry breaking in the pion and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm) 0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex

    Speeding up finite step-size updating of full QCD on the lattice

    Get PDF
    We propose various improvements of finite step-size updating for full QCD on the lattice that might turn finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional Schwinger model with two flavours of Wilson fermions and for QCD two flavours of Wilson fermions and Schr"odinger functional boundary conditions.Comment: 22 pages, 1 figur

    I=2I=2 pion scattering amplitude with Wilson fermions

    Full text link
    We present an exploratory calculation of the I=2I=2 ππ\pi-\pi scattering amplitude at threshold using Wilson fermions in the quenched approximation, including all the required contractions. We find good agreement with the predictions of chiral perturbation theory even for pions of mass 560-700 MeV. Within the 10\% errors, we do not see the onset of the bad chiral behavior expected for Wilson fermions. We also derive rigorous inequalities that apply to 2-particle correlators and as a consequence show that the interaction in the antisymmetric state of two pions has to be attractive.Comment: This PS file includes 4 tables and figures 1-8 on 25 pages. Los Alamos Preprint Number LAUR-92-364

    Masses of the physical mesons from an effective QCD--Hamiltonian

    Get PDF
    The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only in the qqˉq\bar q space, is solved approximately. After coordinate transformation to usual momentum space and Fourier transformation to configuration space a second order differential equation is derived. This retarded Schr\"odinger equation is solved by variational methods and semi-analytical expressions for the masses of all 30 pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromdynamics without free parameter, the agreement with experiment is remarkable, but the approximation scheme is not adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant αs(Q2)\alpha_s(Q^2), in a manner similar but not equal to the one of Richardson in the equal usual-time quantization. Its value is fixed at the Z mass and the 5 flavor quark masses are determined by a fit to the vector meson quarkonia.Comment: 18 pages, 4 Postscript figure
    corecore